Midterm Exam

(February 16th @ 7:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

• Compute the result of the following operations. The operands are signed fixed-point numbers. The result must be a signed fixed-point number. For the division, use x = 5 fractional bits.

1.0111 +	1.010101 -	01.11111 +			
1.101001	1000.0101	0.10001			
10.101 ×	0.111 ×	10.101 ÷			
1.01101	1.0101	0.101			

PROBLEM 2 (10 PTS)

- Represent these numbers in Fixed Point Arithmetic (signed numbers). Use the FX format [12 4].
 ✓ -16.125
 ✓ 19.25
- Complete the table for the following fixed point formats (signed numbers): (6 pts.)

Integer bits	Fractional Bits	FX Format	Range	Resolution
8	6			
6	4			

PROBLEM 3 (40 PTS)

PROBLEM 4 (30 PTS)

- **Greatest Common Divisor** (GCD): This circuit computes the GCD of two *n*-bit unsigned numbers (A, B). For example: \checkmark A = 216, B = 192 \rightarrow GCD = 24. \checkmark A = 132, B = 72 \rightarrow GCD = 12. \checkmark A = 169, B = 63 \rightarrow GCD = 1.
- The digital system is depicted below (FSM + Datapath) for n = 8. This iterative circuit is based on Euclid's GCD algorithm.
 ✓ Input Data: DA, DB
 Output data: GCD

- Sketch the Finite State Machine diagram (in ASM form) given the sequential algorithm (for n = 8). (18 pts.)
 - ✓ The process begins when *s* is asserted, at this moment we capture DA and DB on register a_i and b_i (respectively). Then the process continues by updating a_i and b_i and it is concluded when $a_i = b_i$. The signal done is asserted when the result is computed and appears on output GCD.

• Complete the timing diagram where n = 8. DA and DB are provided as unsigned decimals. You can provide a_i and b_i as unsigned decimals. (12 pts.)

